
The Magazine for Agile Developers and Agile Testers

January 2010

issue 1www.agilerecord.com free digital version made in Germany

© Winston Lue – Fotolia.com

54 www.agilerecord.com

Recently I have heard more and more developers, managers and
consultants asking for more testers who “know what they’re do-
ing”. They were referring to more testers knowing their craft: the
craft of software testing. Though there are many publications
about the craft of software testing (most notably, Brian Marick’s
book by that name [1]), there are different opinions about how
best to define this term. I decided to write down what I under-
stand about this craft, which I practice on a daily basis.

The craft of software testing has matured over the past decades.
Recent software development processes such as eXtreme Pro-
gramming, Scrum and other Agile methodologies have chal-
lenged software testing practitioners to refocus. Software testing
thought leaders have claimed that when developers take respon-
sibility to deliver high-quality code, and collaborate continually
with testers, they’ll get good results. Involving testers right from
the start of the project, rather than treating testing as a separate
”phase” that happens after coding, mandates a mind-shift for
testers in Agile projects.

Take responsibility

As a software tester, you should take responsibility for the out-
come of every decision you make. I call this the zeroth rule of
professionalism. As a tester, you have many occasions to take
responsibility. Here’s an example: when finding a serious bug you
will have to defend your point of view. The development team
might put your approach to software testing into question. Pre-
pare to defend your considerations in the face of these challeng-
es. Be prepared to explain why you think the particular observed
behavior of the system under test is a problem to the user - or
maybe to your company’s reputation with its customers.

Next, when you're in the position to decide upon the test ap-
proach or strategy to take, prepare to be faced with questions
about your decision. Each time you report a software problem,
you may have to defend your viewpoint. Make sure to regularly
take a step back, analyze the particular situation at hand and

decide whether you need to adapt your process. If you do, take
small steps. If you find a gap in your test strategy, brainstorm with
the whole team about actions to take about it. Maybe the unit
testing coverage needs to increase, or maybe the team needs to
bring in a specialist on performance testing. Take responsibility
to manage and steer these improvements based on feedback
from your colleagues and your customers. Over time you will
learn how to tackle problems in your context before they start to
drag the team down.

More often than you will like you'll be confronted with difficult
questions about your decisions. Be prepared to explain your rea-
soning. By making your considerations transparent and involv-
ing your colleagues in the decisions about your test process, you
are more likely to get their buy-in. Over time this will foster trust
among your team members. Your colleagues will start to trust
your decisions, and over time they may start to trust you.

Be pro-active

Every tester needs a pro-active mindset. Sitting in your cubicle
and waiting for the decisions and software packages to flow in is
counter-productive in multiple ways. First of all, your colleagues
will recognize you as someone waiting for something getting
thrown over your wall. If you then notice some bugs in the soft-
ware and simply throw bugs back over that wall, you will find out
over time that your developers and project managers will react
strangely to your efforts. For example, they might not ask you to
join them at the bar in the evening. Maybe next they refuse to
invite you to that important meeting. Secondly, you will be seen
as lazy. Your colleagues will see that they work from nine to five
while you're just sitting in front of your computer reading the
latest online comics or surfing the web. Though this perception
might not reflect reality, it will certainly de-stabilize morale on
your team.

Don’t hide in front of your monitor - seek out ways you can help.
You may find out that you can become a first-class team member

Software Testing Craft
by Markus Gärtner

©
 ????

©
 Eim

antas B
uzas - Fotolia.com

55www.agilerecord.com

by leveraging your abilities. When you’ve earned some credibil-
ity, you might be invited to some important meetings. Go to the
meetings to which you were not invited, if you think you can make
meaningful contributions. Maybe people will recognize the value
you bring to the project and invite you the next time around. Go
to your developer to help with that bug fix. You may want to ask
questions about the changes he/she makes, but resist the temp-
tation to ask about every little change. Seek opportunities to
show your meaningful contribution to the team and the project,
and maybe - over time - you will be included in the decisions right
from the start. Meanwhile, try to maintain your own motivation.

Never be blocked

By being pro-active, we can avoid being blocked. Instead of wait-
ing for that bug-fix to get passed over the wall to us, testers can
go out to their developers and help them fix the bug. Maybe you
recently learned some design patterns and want to interview your
developer how these are used in the production code. Showing
interest builds trust and adds to the team’s stability.

Another variation of “never be blocked” is staying directly in
touch with your customer. Interview your customer on how they
do a particular task in their business. Ask your customer hon-
estly to show you how they work in order to learn about their daily
work. Pair with your customer to gain additional insights. You will
increase your understanding of the requirements and whether
your software is going to be useful, which will be a huge contribu-
tion to your team’s success.

Practice Testing

Seek out opportunities to learn new testing practices. Today's
Internet is full of applications with which you may test and train
your skills. Some testing leaders offer testing challenges on their
blogs that will help you hone your skills. This is how I became a
black-belt of the Miagi-Do school of testing, which Matt Heusser
founded about a year ago. Initially, I took his testing challenge
and mastered it. Since then Matt and I have kept in contact. Reg-
ularly, we exchange thoughts. Matt made me start to write about
testing. This helped me get in touch with other professional soft-
ware testers more regularly. Today, if I have a difficult problem
at work, I can ask one of my contacts over the Internet for their
opinion on it.

You may also join any of the testing-related mailing lists and ask
for a challenge, a small program to train your testing approach.
This will introduce you to new ways of dealing with software and
new ways on how to do testing. Download an open-source tool
from the Internet, install it and try it out. If you find issues, write
a test report to the contributing programmers to let them know
about your perception of their program. You might file a bug on
their website. You may earn respect for your valuable feedback
and contributions by doing so.

You can gain valuable experience by testing Internet software
and participating in testing challenges in your spare time. Ex-
pect to screw up - more often than you would like to. By taking

a step back and reflecting on your failure, you will realize how to
improve the next time. Since your errors will not have dramatic
consequences for your company, you will be able to learn and
improve your testing skills in a safe environment. And besides
that, it might turn out to be pure fun for you.

Continuous Learning

Learning is a key practice for self-improvement. You can achieve
continuous learning in several different ways. Start by reading
some books on topics related to your work. These do not need
to be technical at all. For example, psychology books give in-
sights into your team structure and how people at your work
interact with each other. For example “Please Understand Me”
from Kiersey and Bates[2] and “Fearless Change” from Rising
and Manns[3] are two books on the topic that are worth reading.
Over time you may want to peek into some blogs on the Internet,
read articles in online magazines and participate in newsgroups
and online communities. Over time you may be able to talk at
conferences about your work and spread and share your knowl-
edge with others while getting to know their particular context.
Remember: When you stop learning, you are dead.

Apprenticeship

When you have sufficiently mastered your craft, you may be ready
to take on apprentices. By teaching new students how to become
a software tester in your particular context, you may even learn
new things from your colleagues. When teaching how you think
testing can be done, you may realize through self-reflection how
to improve your very own testing skills. In order to know what to
teach, you need to reflect on your course of action, you need to
observe yourself while testing, you need to interview yourself. Not
only does this enhance your teaching abilities for your apprentic-
es, but thinking about what and how to teach you might find out
how to improve yourself. Self-blindness is the first big obstacle to
innovation, according to Jerry Weinberg in "Becoming a Technical
Leader"[4]. By reflecting on yourself, you can avoid this obstacle.

What should I do tomorrow?

Being a software testing craftsperson is mostly an attitude of
professionalism. Taking responsibility for your decisions and ac-
tions in software testing should become general common sense.
Defending your position and your approaches takes this concept
even further. Stick around in testing long enough, and you are
bound to be asked some tough questions. Since every software
problem is a quality problem, you will need to defend your strat-
egy and your approach to testing more often than you like. By be-
ing pro-active and avoiding to become blocked, you may be able
to lengthen the time between “impossible to answer” questions
you get from your colleagues. Keeping your knowledge up-to-date
also helps you in that quest. By taking testing challenges from
a blog or testing professional on the Internet, you can train your
testing skills continuously and seek for different approaches in
other contexts.

Training new colleagues and help them master the craft on their

Software Testing Craft

own helps you avoid the fallacy of self-blindness, and might also
give you some new ideas and approaches over time. Altogether,
this should help you get to know how to master the craft of soft-
ware testing. ■

Bibliography

[1] The Craft of Software Testing, Brian Marick, Prentice Hall,
1995
[2] Please Understand Me, David Keirsey, Marilyn Bates, Pro-
metheus Books, 1984
[3] Fearless Change, Linda Rising, Mary Lynn Manns, Addison-
Wesley Longman, 2004
[4] Becoming a Technical Leader, Gerald M. Weinberg, Dorset
House, 1986

Markus Gärtner
Markus Gärtner is a
software tester for Orga
Systems in Paderborn,
Germany. Personally com-
mitted to Agile methods,
he believes in continuous
improvement in software
testing through skills.
Markus also blogs at blog.
shino.de and is a black-

belt in the Miagi-Do school of software testing.

> About the author

©
 iS

to
ck

ph
ot

o.
co

m
/

Pa
lto

IREB

Certified Professional for

Requirements Engineering

- Foundation Level

http://training.diazhilterscheid.com/

training@diazhilterscheid.com

24.02.10-26.02.10 Berlin

21.04.10-23.04.10 Berlin

09.06.10-11.06.10 Berlin

